Seu Estado
Não Inscrito
Preço
Assinantes

O que você aprenderá

  • Detecte objetos em imagens e vídeos utilizando a moderna arquitetura YOLO
  • Implemente o YOLO utilizando o framework Darknet e a biblioteca OpenCV com o Python
  • Entenda a teoria básica sobre detecção de objetos e arquitetura YOLO
  • Treine seu próprio detector personalizado utilizando as GPUs gratuitas do Google Colab

Requisitos

  • Lógica de programação, principalmente estruturas condicionais e de repetição (if e for)
  • Conhecimentos básicos sobre Python são desejáveis
  • Conhecimentos básicos sobre o OpenCV são desejáveis (não obrigatório)

Descrição

Dentro da área da Visão Computacional existe a sub-área de detecção de objetos, que visa encontrar objetos personalizados em imagens e vídeos e é muito utilizada em carros autônomos, os quais precisam identificar pedestres e outros veículos para evitar colisões, bem como reconhecer placas de trânsito para seguir uma direção segura. Essas técnicas também podem ser utilizadas para detectar praticamente qualquer tipo de objeto em imagens ou vídeos, como por exemplo: relógios, placas de veículos, animais, faces de pessoas, celulares, logo de empresas dentre vários outros! Em resumo, você pode treinar um classificador para qualquer tipo de cenário!

Existem diversas técnicas dentro deste cenário, porém, a que mais se destaca e que possui resultados incríveis é chamada de YOLO (You Only Look Once) e consiste na utilização de Redes Neurais Convolucionais da área de Deep Learning (redes neurais profundas). Muitas grandes empresas estão utilizando essa técnica para diversos tipos de aplicações comerciais, como por exemplo, utilização em carros autônomos, robôs humanoides, sistemas de segurança e defesa, rastreamento de objetos e automação industrial.

Atualmente o YOLO é considerado o estado da arte em detecção de objetos em tempo real. A sua quarta versão (YOLOv4) apresentou melhoras significativas tanto em velocidade quanto em precisão, superando o resultado de todos os melhores detectores concorrentes até o momento de sua publicação.

E para levar você até essa área, neste curso você aprenderá na prática como utilizar o YOLO para detectar mais de 600 objetos diferentes em imagens e vídeos, utilizando a linguagem Python, o framework Darknet e também a biblioteca OpenCV! Todos os exemplos serão implementados passo a passo utilizando o Google Colab, ou seja, você não precisa se preocupar com instalações e configurações de bibliotecas em sua máquina, pois tudo será desenvolvido on-line utilizando as GPUs do Google! Além de utilizar os recursos prontos do YOLO, você também aprenderá a construir sua própria base de dados de imagens caso precise treinar um detector de objetos personalizado! Confira os tópicos do curso:

  • Teoria básica sobre detecção de objetos
  • Como o YOLO funciona
  • Detecção de objetos em imagens e vídeos, utilizando o framework Darknet e a biblioteca OpenCV
  • Criação de bases de dados para o treinamento de detectores personalizados
  • Teoria sobre redes neurais artificiais e redes neurais convolucionais

YOLO é considerada a arquitetura mais eficiente e moderna para detecção de objetos, que muitas empresas estão utilizando em seus projetos comerciais! Você está preparado(a) para dar um importante passo na sua carreira? Aguardamos você no curso!

Para quem é este curso

  • Pessoas interessadas em aprender a arquitetura YOLO na teoria e prática
  • Pessoas interessadas em detecção de objetos personalizados
  • Pessoas interessadas na área de Visão Computacional
  • Alunos de graduação que cursam disciplinas de Computação Gráfica, Processamento Digital de Imagens ou Inteligência Artificial

Conteúdo do Curso

Expandir

Avaliações e Comentários

4.8
Avaliação média
46 Avaliações
5
39
4
5
3
2
2
0
1
0
Qual foi a sua experiência com esse curso? Conte para nós!
Bruno Gonçalves
Publicado 2 dias atrás
Bruno

Muito bom a didática do curso!

×
Preview Image
Profile photo ofcomentarios_udemy Comentário extraído do curso na Udemy
Publicado 2 semanas atrás
por Fábio Carlos Moreno

Bom para entender o conceito. Não é muito voltado para programação comercial como diz no início do curso. Espera usar ferramentas VSCode e outros para o desenvolvimento.

×
Preview Image
Profile photo ofcomentarios_udemy Comentário extraído do curso na Udemy
Publicado 2 semanas atrás
por Joan

Curso muito bom e detalhado. Vale a pena!

×
Preview Image
Profile photo ofcomentarios_udemy Comentário extraído do curso na Udemy
Publicado 2 meses atrás
por DR Bandeira

Estou gostando do conteúdo

×
Preview Image
Profile photo ofcomentarios_udemy Comentário extraído do curso na Udemy
Publicado 3 meses atrás
por Anderson Matheus Melo da Silva

Excelente curso! Tem uma boa base da teoria para que você consiga compreender o que está acontecendo por trás do Framework e foca principalmente nas implementações práticas, assim você sabe como executar as execuções e o treinamento com suas próprias imagens.

×
Preview Image
GUSTAVO GÓES
Publicado 3 meses atrás
Video sao bons e bem informativos porém alguns aspectos deixou a desejar

Estou tendo problemas para rodar o codigo na etapa 3 onde " import zipfile". enfim, achei que o erro era pq nao tinha alocado o google collab na minha conta mas dai testei na propria conta do professor e tb esta dando erro, quero entender como resolver ou como dar upload em arquivos proprios, obrigado.

×
Preview Image
Publicado 3 meses atrás

Olá, Gustavo! Você pode postar a sua dúvida no fórum do curso e não na avaliação. Assim podemos ver o que está acontecendo para tentar lhe ajudar

Alan Pereira
Publicado 5 meses atrás
Exelente

Bem explicativo!

×
Preview Image
Profile photo ofcomentarios_udemy Comentário extraído do curso na Udemy
Publicado 5 meses atrás
por Uender Carlos Barbosa

passo a passo muito bom, diferencial em portugues rsrsrs

×
Preview Image
Profile photo ofcomentarios_udemy Comentário extraído do curso na Udemy
Publicado 5 meses atrás
por Murilo Santos de Souza

Muito bem explicado!

×
Preview Image
BRUNO R GONCALVES
Publicado 6 meses atrás
interessante

ótimo curso

×
Preview Image
Mostrar mais avaliações
Qual foi a sua experiência com esse curso? Conte para nós!