Seu Estado
Não Inscrito
Preço
Assinantes

O que você aprenderá

  • Entenda os conceitos teóricos sobre mineração de textos
  • Aprenda passo a passo na prática como funciona um sistema para encontrar emoção em textos
  • Desenvolva seus próprios sistemas de aprendizado de máquina para classificar textos
  • Entenda como funciona o aprendizado de máquina (machine learning) aplicado em bases de dados textuais

Requisitos

  • É recomendado conhecimentos básicos sobre lógica de programação
  • Não são necessários conhecimentos prévios sobre a linguagem Python ou sobre Inteligência Artificial
  • Se você tiver algum conhecimento sobre Python, conseguirá entender melhor a codificação

Descrição

A Mineração de Textos é uma das subáreas da Inteligência Artificial que tem como objetivo básico a busca por padrões e conhecimento útil em textos. O exemplo clássico dessa área são os filtros de spam muito utilizados nos sistemas de e-mail, os quais aplicam algoritmos de machine learning para identificar se uma mensagem é ou não é spam! Além disso, essas técnicas também podem ser utilizadas para classificação de notícias, ou seja, caso o sistema receba um conjunto de textos como entrada, os algoritmos podem identificar se são notícias sobre esporte, economia ou política; por exemplo.

Com o grande crescimento das redes sociais existe uma quantidade muito grande de texto disponível na web, os quais podem ser utilizados para identificar as emoções que as pessoas estão apresentando! E isso pode ser muito útil para empresas que desejam saber quão satisfeitos seus clientes estão com seus produtos e/ou serviços. Por exemplo, se uma pessoa compra uma nova televisão é possível medir seu grau de satisfação por meio das emoções transmitidas nos textos que essa pessoa escreve sobre a televisão! Dessa forma, a empresa pode conhecer melhor o perfil de seus clientes e tomar decisões estratégicas quanto ao seu posicionamento no mercado!

Baseado nisso, neste curso você terá uma visão teórica e prática de como funciona o processo de mineração de textos utilizando a técnica de classificação! É abordado um estudo de caso prático que mostra passo a passo como utilizar o algoritmo Naive Bayes para identificar emoções em frases, ou seja, informamos um texto qualquer para o sistema e o mesmo retorna qual emoção foi encontrada! Serão abordados os conceitos sobre classificação de textos, remoção de stops words, aplicação de algoritmos de stemming, teoria sobre o algoritmo Naive Bayes e finalmente a implementação do classificador de emoções. Além disso, também teremos um módulo no qual você aprenderá como avaliar o algoritmo construído e interpretar seus resultados. Com isso, você terá uma visão teórica e prática passo a passo de todas as etapas que envolvem a classificação de textos!

Utilizaremos a linguagem Python e a biblioteca NLTK (Natural Language Toolkit) para o desenvolvimento passo a passo do sistema inteligente, que são ferramentas muito importantes no cenário da Inteligência Artificial! E não há problema se você não conhece Python, pois os conceitos serão apresentados de forma que se você tem uma noção básica de lógica de programação conseguirá acompanhar as aulas tranquilamente. É importante salientar que este curso será melhor aproveitado por iniciantes na área de mineração de textos e que não conhecem os tópicos citados anteriormente, sendo considerado um material inicial para estudos mais avançados.

Para quem é este curso

  • Pessoas interessadas em Inteligência Artificial e Mineração de Texto
  • Alunos que querem aprender passo a passo como funciona a área de classificação de textos

Conteúdo do Curso

Expandir
Conteúdo da Lição
0% Completo 0/2 Passos
Conteúdo da Lição
0% Completo 0/1 Passos

Avaliações e Comentários

4.7
Avaliação média
219 Avaliações
5
169
4
36
3
12
2
2
1
0
Qual foi a sua experiência com esse curso? Conte para nós!
Giovanne
Publicado 3 semanas atrás
Muito bom!

Muito bem explicado e prático.

×
Preview Image
Pericles Neto
Publicado 2 meses atrás
Sensacional

Gosto bastante da didática e dos detalhes do professor. Parabéns por mais esse curso

×
Preview Image
Gabriel de Sá Rodrigues
Publicado 4 meses atrás
Complementar

Pra mim valeu mais a pena a parte do pré-processamento e também por ter mais conhecimento da biblioteca NLTK, o algoritmo Naive Bayes por ser um modelo clássico de Machine Learning não me deixa muito excitado, mas é sempre bom relembrar como usar os clássicos e aqui ele (o modelo) deu conta do recado, o curso foi bom, e recomendo para quem quer algo mais simples mas ao mesmo tempo funcional

×
Preview Image
Kayo
Publicado 5 meses atrás
Parabens

Conteudo top de mais

×
Preview Image
Profile photo ofcomentarios_udemy Comentário extraído do curso na Udemy
Publicado 6 meses atrás
por Paulo Estevam Andrade Mota

Aula muito bem explicada! Bora pra prática!!

×
Preview Image
Profile photo offbmarques fbmarques
Publicado 6 meses atrás
Não gostei

Eu creio que a mão na massa poderia ter sido mais apresentada, teve muita teoria, mas nas considerações, que se fala que devem ser feitos mais testes, com/sem stop words e outros testes, eu creio que deveria ser apresentado como realizar, mas mão na massa da programação, já que o conteúdo teórico eu creio que foi muito bom.

×
Preview Image
Lucas Alves Rodrigues de Barros
Publicado 8 meses atrás
Ótimo curso

Ensina muita bem o conceito de probabilidade de uma palavra aparecer no texto e é uma ótima forma de retirar emoção de frases

×
Preview Image
Raphael Luengo Bonillo
Publicado 10 meses atrás
Excepcional!

A diferença desse curso para qualquer outro é que o algoritmo é de fato explicado, em linguagem simples e direta. Ou você entende ou você entende! Melhor didática do mercado, seguramente.

×
Preview Image
Profile photo ofross021 Rodolfo Pereira
Publicado 1 ano atrás
Muito bem explicado, meu primeiro contato com processamento de linguagem natural

O professor explica de maneira bem clara, e tem uma boa linha de raciocínio, foi meu primeiro contato com processamento de linguagem natural e consegui conectar bem os conceitos, principalmente nas ultimas partes sobre o desempenho do algoritmo e a variação de aceitabilidade de acordo com cada cenário de uso

×
Preview Image
Profile photo ofpaulo_neto Paulo Santos Neto
Publicado 1 ano atrás
Ótimo Curso

Fácil entendimento e excelente para iniciantes na área.

×
Preview Image
Mostrar mais avaliações
Qual foi a sua experiência com esse curso? Conte para nós!