Seu Estado
Não Matriculado
Preço
Assinantes

O que você aprenderá

  • Tenha uma base teórica sólida sobre os principais algoritmos de Machine Learning
  • Utilize as bibliotecas numpy, sklearn e pandas aplicado em Data Science e Machine Learning
  • Aprenda na teoria e na prática sobre os algoritmos de Machine Learning para classificação, regressão, regras de associação e agrupamento
  • Aprenda a realizar o pré-processamento em bases de dados com pandas e sklearn
  • Entenda como funcionam as técnicas para redução de dimensionalidade PCA, KernelPCA e LDA
  • Aprenda a avaliar os algoritmos de Machine Learning usando Estatística
  • Aprenda a detectar outliers em bases de dados
  • Crie classificadores para prever se uma pessoa pagará ou não pagará um empréstimo
  • Crie classificadores para prever o salário de uma pessoa baseado em seus dados pessoais
  • Aprenda como vários conceitos da estatística estão relacionados com Machine Learning, como por exemplo: correlação, covariância, testes de hipóteses e distribuição normal
  • Implemente algoritmos de regressão para prever o preço de casas e o preço de planos de saúde
  • Implemente o algoritmo Apriori para descobrir regras de associação em bases de dados de mercados
  • Agrupe os clientes de um banco utilizando dados sobre o uso do cartão de crédito
  • Utilize aprendizagem por reforço para ensinar um simulador de táxi interagir com o passageiro
  • Implemente um classificador de sentimentos em textos utilizando a biblioteca spaCy
  • Implemente detecção de faces, reconhecimento facial e rastreamento de objetos da área da Visão Computacional
  • Implemente técnicas de seleção de atributos para descobrir os campos mais importantes em uma base de dados
  • Implemente técnicas de subamostragem e sobreamostragem para tratar bases de dados desbalanceadas
  • Utilize o algoritmo ARIMA e o Facebook Prophet para previsões futuras dos número de passageiros em empresas aéreas e também a previsão do número de visitantes em uma página web

Requisitos

  • O único pré-requisito obrigatório é conhecimento sobre lógica de programação, principalmente estruturas condicionais e de repetição
  • Conhecimentos em Python não são obrigatórios

Descrição

A área de Machine Learning (Aprendizagem de Máquina) e Data Science (Ciência de Dados) é atualmente um dos campos de trabalho mais relevantes da Inteligência Artificial, sendo responsável pela utilização de algoritmos inteligentes que tem a função de fazer com que os computadores aprendam por meio de bases de dados. O mercado de trabalho de Machine Learning nos Estados Unidos e em vários países da Europa está em grande ascensão; e a previsão é que no Brasil cada vez mais esse tipo de profissional seja requisitado! Inclusive alguns estudos apontam que o conhecimento dessa área será em breve um pré-requisito para os profissionais de Tecnologia da Informação! E dentro deste contexto está o cientista de dados, que já foi classificado como o trabalho “número 1” por vários veículos da mídia internacional.

E para levar você até essa área, neste curso completo você terá uma visão teórica e prática sobre os principais algoritmos de machine learning utilizando o Python, que é uma das linguagens de programação mais relevantes nesta área. Além disso, vamos utilizar o Google Colab para a implementação dos exemplos, o que facilita o entendimento dos conceitos e evita problemas de instalação de bibliotecas. Este curso é considerado de A à Z pelo fato de apresentar desde os conceitos mais básicos até técnicas mais avançadas, de modo que ao final você terá todas as ferramentas necessárias para construir soluções complexas e que podem ser aplicadas em problemas do dia-a-dia das empresas! Você aprenderá tudo passo a passo, ou seja, tanto a teoria quanto a prática de cada algoritmo! O curso é dividido em cinco partes principais:

  1. Classificação – pré-processamento dos dados, naïve bayes, árvores de decisão, random forest, regras, regressão logística, máquinas de vetores de suporte (SVM), redes neurais artificiais, avaliação de algoritmos e combinação e rejeição de classificadores
  2. Regressão – regressão linear simples e múltipla, polinomial, árvores de decisão, random forest, vetores de suporte (SVR) e redes neurais artificiais
  3. Regras de associação – algoritmos Apriori e ECLAT
  4. Agrupamento – k-means, agrupamento hierárquico e DBSCAN
  5. Tópicos complementares – redução de dimensionalidade com PCA, KernelPCA e LDA, deteção de outliers, aprendizagem por reforço, processamento de linguagem natural, visão computacional, tratamento de dados desbalanceados, seleção de atributos e previsão de séries temporais

Veja abaixo alguns dos estudos de caso que serão implementados:

  • Criação de gráficos dinâmicos para visualização de bases de dados
  • Previsão se uma pessoa pagará um empréstimo baseado no histórico financeiro
  • Previsão do salário de uma pessoa levando em consideração seus dados pessoais
  • Previsão do preço do plano de saúde baseado na idade
  • Previsão do preço de casas considerando
  • Geração de regras de associação para compor prateleiras de mercado
  • Agrupamento de clientes simulares considerando dados sobre o uso do cartão de crédito
  • Simulação de um táxi utilizando aprendizagem por reforço
  • Classificação de sentimentos em textos com processamento de linguagem natural
  • Detecção de faces, reconhecimento facial e rastreamento de objetos
  • Previsão de visitas a websites com séries temporais

Este curso tem o objetivo de servir como um referencial de consulta sobre as técnicas abordadas, por isso ele procura cobrir a maior parte dos assuntos que envolvem machine learning. Este curso pode ser categorizado para todos os níveis, pois pode servir de base para consulta para alunos mais experientes no assunto e também um ótimo guia para quem está iniciando na área!

Para quem é este curso

  • Pessoas interessadas em iniciar seus estudos em aprendizagem de máquina e ciência de dados
  • Pessoas que queiram iniciar carreira na área de Data Science ou Machine Learning
  • Empreendedores que queiram aplicar aprendizagem de máquina em projetos comerciais
  • Analistas de dados que queiram aumentar seu conhecimento na área de aprendizagem de máquina
  • Empresários que desejam criar soluções eficientes para problemas reais em suas empresas
  • Alunos de graduação e pós graduação que estão estudando disciplinas ligadas a área de Inteligência Artificial
  • Iniciantes na área de Inteligência Artificial

Conteúdo do Curso

Expandir
Parte 1 - Classificação
Parte 2 - Regressão
Parte 3 - Regras de Associação
Parte 4 - Agrupamento (clustering)
Parte 5 - Tópicos complementares
1 de 2

Avaliações e Comentários

4.8
Avaliação média
800 Avaliações
5
670
4
103
3
27
2
0
1
0
Qual foi a sua experiência com esse curso? Conte para nós!
André Luiz Macedo da Cruz
Publicado 19 horas atrás
Excelente didática

Abordagem tranquila e compreensível dos tópicos apresentados.

×
Preview Image
Comentário extraído do curso na Udemy
Publicado 3 semanas atrás
por Suzimeire Marques Martins

Até o momento conteúdo bem explicado

×
Preview Image
Comentário extraído do curso na Udemy
Publicado 3 semanas atrás
por João Lucas

O curso tem sido bem estruturado, e tenho conseguido entender as partes básicas de python tendo em vista que eu não tinha nenhuma experiência antes

×
Preview Image
Comentário extraído do curso na Udemy
Publicado 3 semanas atrás
por Felipe Cordeiro de Sousa

Curso muito bem explicativo. Porém, poderia abordar mais conceitos matemáticos durante o curso ou até fazer uma segunda versão desse mesmo curso, mas com uma carga matemática maior.

×
Preview Image
Comentário extraído do curso na Udemy
Publicado 4 semanas atrás
por Thales Costa

muito boa!

×
Preview Image
Comentário extraído do curso na Udemy
Publicado 4 semanas atrás
por Bianca de Queiroz Fernandes

excelente

×
Preview Image
Comentário extraído do curso na Udemy
Publicado 1 mês atrás
por José Guilherme Gomes

Gostei muito. O curso explica muito bem os conceitos.

×
Preview Image
Comentário extraído do curso na Udemy
Publicado 1 mês atrás
por Gustavo Junqueira Valias Meira Filho

É exatamente o que eu estava procurando para adentrar no mundo do Machine Learning. Didática ótima e conceitos explicados com muita facilidade. O único ponto de atenção é que algumas bibliotecas mais complexas já atualizaram (mais para o final do curso como em aprendizagem por reforço, visão computacional e séries temporais) que exigem um pouco mais de pesquisa do aluno para conseguir executar o código com base na nova documentação!

×
Preview Image
Comentário extraído do curso na Udemy
Publicado 1 mês atrás
por Paola Brustolini

Didática perfeita!

×
Preview Image
Comentário extraído do curso na Udemy
Publicado 1 mês atrás
por Bruno Alexandre dos santos

O curso é bem completo, tem alguns pontos como o material ser todo em um único código isso dá uma atrapalhada afinal é um curso grande, uma sugestão seria separar o material por seção ou algo assim.

×
Preview Image
Mostrar mais avaliações
Qual foi a sua experiência com esse curso? Conte para nós!