Respostas no Fórum

Visualizando 2 posts - 1 até 2 (de 2 do total)
  • Autor
    Posts
  • em resposta a: Criação de um modelo customizado de pilha de madeira #35011
    Bruno Leite
    Participante

      Olá boa tarde. Então tentei diminuir o threshold e mesmo assim não apareceu o bounding box no prediction.img. Onde consigo visualizar as iterações que foram realizadas no treinamento ? Abaixo está o log quando rodo o detector do treinamento.

      Obrigado pela ajuda mestre!

      Abraços

      CUDA-version: 11010 (11020), cuDNN: 7.6.5, CUDNN_HALF=1, GPU count: 1 
      CUDNN_HALF=1 
      OpenCV version: 3.2.0
      0 : compute_capability = 600, cudnn_half = 0, GPU: Tesla P100-PCIE-16GB 
      net.optimized_memory = 0 
      mini_batch = 1, batch = 1, time_steps = 1, train = 0 
      layer filters size/strd(dil) input output
      0 Create CUDA-stream - 0 
      Create cudnn-handle 0 
      conv 32 3 x 3/ 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF
      1 conv 64 3 x 3/ 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF
      2 conv 64 1 x 1/ 1 208 x 208 x 64 -> 208 x 208 x 64 0.354 BF
      3 route 1 -> 208 x 208 x 64 
      4 conv 64 1 x 1/ 1 208 x 208 x 64 -> 208 x 208 x 64 0.354 BF
      5 conv 32 1 x 1/ 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF
      6 conv 64 3 x 3/ 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF
      7 Shortcut Layer: 4, wt = 0, wn = 0, outputs: 208 x 208 x 64 0.003 BF
      8 conv 64 1 x 1/ 1 208 x 208 x 64 -> 208 x 208 x 64 0.354 BF
      9 route 8 2 -> 208 x 208 x 128 
      10 conv 64 1 x 1/ 1 208 x 208 x 128 -> 208 x 208 x 64 0.709 BF
      11 conv 128 3 x 3/ 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF
      12 conv 64 1 x 1/ 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF
      13 route 11 -> 104 x 104 x 128 
      14 conv 64 1 x 1/ 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF
      15 conv 64 1 x 1/ 1 104 x 104 x 64 -> 104 x 104 x 64 0.089 BF
      16 conv 64 3 x 3/ 1 104 x 104 x 64 -> 104 x 104 x 64 0.797 BF
      17 Shortcut Layer: 14, wt = 0, wn = 0, outputs: 104 x 104 x 64 0.001 BF
      18 conv 64 1 x 1/ 1 104 x 104 x 64 -> 104 x 104 x 64 0.089 BF
      19 conv 64 3 x 3/ 1 104 x 104 x 64 -> 104 x 104 x 64 0.797 BF
      20 Shortcut Layer: 17, wt = 0, wn = 0, outputs: 104 x 104 x 64 0.001 BF
      21 conv 64 1 x 1/ 1 104 x 104 x 64 -> 104 x 104 x 64 0.089 BF
      22 route 21 12 -> 104 x 104 x 128 
      23 conv 128 1 x 1/ 1 104 x 104 x 128 -> 104 x 104 x 128 0.354 BF
      24 conv 256 3 x 3/ 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF
      25 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
      26 route 24 -> 52 x 52 x 256 
      27 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
      28 conv 128 1 x 1/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.089 BF
      29 conv 128 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.797 BF
      30 Shortcut Layer: 27, wt = 0, wn = 0, outputs: 52 x 52 x 128 0.000 BF
      31 conv 128 1 x 1/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.089 BF
      32 conv 128 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.797 BF
      33 Shortcut Layer: 30, wt = 0, wn = 0, outputs: 52 x 52 x 128 0.000 BF
      34 conv 128 1 x 1/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.089 BF
      35 conv 128 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.797 BF
      36 Shortcut Layer: 33, wt = 0, wn = 0, outputs: 52 x 52 x 128 0.000 BF
      37 conv 128 1 x 1/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.089 BF
      38 conv 128 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.797 BF
      39 Shortcut Layer: 36, wt = 0, wn = 0, outputs: 52 x 52 x 128 0.000 BF
      40 conv 128 1 x 1/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.089 BF
      41 conv 128 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.797 BF
      42 Shortcut Layer: 39, wt = 0, wn = 0, outputs: 52 x 52 x 128 0.000 BF
      43 conv 128 1 x 1/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.089 BF
      44 conv 128 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.797 BF
      45 Shortcut Layer: 42, wt = 0, wn = 0, outputs: 52 x 52 x 128 0.000 BF
      46 conv 128 1 x 1/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.089 BF
      47 conv 128 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.797 BF
      48 Shortcut Layer: 45, wt = 0, wn = 0, outputs: 52 x 52 x 128 0.000 BF
      49 conv 128 1 x 1/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.089 BF
      50 conv 128 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.797 BF
      51 Shortcut Layer: 48, wt = 0, wn = 0, outputs: 52 x 52 x 128 0.000 BF
      52 conv 128 1 x 1/ 1 52 x 52 x 128 -> 52 x 52 x 128 0.089 BF
      53 route 52 25 -> 52 x 52 x 256 
      54 conv 256 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 256 0.354 BF
      55 conv 512 3 x 3/ 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF
      56 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
      57 route 55 -> 26 x 26 x 512 
      58 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
      59 conv 256 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.089 BF
      60 conv 256 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.797 BF
      61 Shortcut Layer: 58, wt = 0, wn = 0, outputs: 26 x 26 x 256 0.000 BF
      62 conv 256 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.089 BF
      63 conv 256 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.797 BF
      64 Shortcut Layer: 61, wt = 0, wn = 0, outputs: 26 x 26 x 256 0.000 BF
      65 conv 256 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.089 BF
      66 conv 256 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.797 BF
      67 Shortcut Layer: 64, wt = 0, wn = 0, outputs: 26 x 26 x 256 0.000 BF
      68 conv 256 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.089 BF
      69 conv 256 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.797 BF
      70 Shortcut Layer: 67, wt = 0, wn = 0, outputs: 26 x 26 x 256 0.000 BF
      71 conv 256 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.089 BF
      72 conv 256 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.797 BF
      73 Shortcut Layer: 70, wt = 0, wn = 0, outputs: 26 x 26 x 256 0.000 BF
      74 conv 256 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.089 BF
      75 conv 256 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.797 BF
      76 Shortcut Layer: 73, wt = 0, wn = 0, outputs: 26 x 26 x 256 0.000 BF
      77 conv 256 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.089 BF
      78 conv 256 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.797 BF
      79 Shortcut Layer: 76, wt = 0, wn = 0, outputs: 26 x 26 x 256 0.000 BF
      80 conv 256 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.089 BF
      81 conv 256 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.797 BF
      82 Shortcut Layer: 79, wt = 0, wn = 0, outputs: 26 x 26 x 256 0.000 BF
      83 conv 256 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 256 0.089 BF
      84 route 83 56 -> 26 x 26 x 512 
      85 conv 512 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 512 0.354 BF
      86 conv 1024 3 x 3/ 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF
      87 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
      88 route 86 -> 13 x 13 x1024 
      89 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
      90 conv 512 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.089 BF
      91 conv 512 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.797 BF
      92 Shortcut Layer: 89, wt = 0, wn = 0, outputs: 13 x 13 x 512 0.000 BF
      93 conv 512 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.089 BF
      94 conv 512 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.797 BF
      95 Shortcut Layer: 92, wt = 0, wn = 0, outputs: 13 x 13 x 512 0.000 BF
      96 conv 512 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.089 BF
      97 conv 512 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.797 BF
      98 Shortcut Layer: 95, wt = 0, wn = 0, outputs: 13 x 13 x 512 0.000 BF
      99 conv 512 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.089 BF
      100 conv 512 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.797 BF
      101 Shortcut Layer: 98, wt = 0, wn = 0, outputs: 13 x 13 x 512 0.000 BF
      102 conv 512 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.089 BF
      103 route 102 87 -> 13 x 13 x1024 
      104 conv 1024 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x1024 0.354 BF
      105 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
      106 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
      107 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
      108 max 5x 5/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.002 BF
      109 route 107 -> 13 x 13 x 512 
      110 max 9x 9/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.007 BF
      111 route 107 -> 13 x 13 x 512 
      112 max 13x13/ 1 13 x 13 x 512 -> 13 x 13 x 512 0.015 BF
      113 route 112 110 108 107 -> 13 x 13 x2048 
      114 conv 512 1 x 1/ 1 13 x 13 x2048 -> 13 x 13 x 512 0.354 BF
      115 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
      116 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
      117 conv 256 1 x 1/ 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF
      118 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256
      119 route 85 -> 26 x 26 x 512 
      120 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
      121 route 120 118 -> 26 x 26 x 512 
      122 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
      123 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
      124 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
      125 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
      126 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
      127 conv 128 1 x 1/ 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF
      128 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128
      129 route 54 -> 52 x 52 x 256 
      130 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
      131 route 130 128 -> 52 x 52 x 256 
      132 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
      133 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
      134 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
      135 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
      136 conv 128 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
      137 conv 256 3 x 3/ 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
      138 conv 21 1 x 1/ 1 52 x 52 x 256 -> 52 x 52 x 21 0.029 BF
      139 yolo
      [yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.20
      nms_kind: greedynms (1), beta = 0.600000 
      140 route 136 -> 52 x 52 x 128 
      141 conv 256 3 x 3/ 2 52 x 52 x 128 -> 26 x 26 x 256 0.399 BF
      142 route 141 126 -> 26 x 26 x 512 
      143 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
      144 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
      145 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
      146 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
      147 conv 256 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
      148 conv 512 3 x 3/ 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
      149 conv 21 1 x 1/ 1 26 x 26 x 512 -> 26 x 26 x 21 0.015 BF
      150 yolo
      [yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.10
      nms_kind: greedynms (1), beta = 0.600000 
      151 route 147 -> 26 x 26 x 256 
      152 conv 512 3 x 3/ 2 26 x 26 x 256 -> 13 x 13 x 512 0.399 BF
      153 route 152 116 -> 13 x 13 x1024 
      154 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
      155 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
      156 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
      157 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
      158 conv 512 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
      159 conv 1024 3 x 3/ 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
      160 conv 21 1 x 1/ 1 13 x 13 x1024 -> 13 x 13 x 21 0.007 BF
      161 yolo
      [yolo] params: iou loss: ciou (4), iou_norm: 0.07, obj_norm: 1.00, cls_norm: 1.00, delta_norm: 1.00, scale_x_y: 1.05
      nms_kind: greedynms (1), beta = 0.600000 
      Total BFLOPS 59.570 
      avg_outputs = 489910 
      Allocate additional workspace_size = 52.43 MB 
      Loading weights from ./backup/yolov4-custom_best.weights...
      seen 64, trained: 294 K-images (4 Kilo-batches_64) 
      Done! Loaded 162 layers from weights-file 
      Detection layer: 139 - type = 28 
      Detection layer: 150 - type = 28 
      Detection layer: 161 - type = 28 
      ./training/IMG7.JPG: Predicted in 20.193000 milli-seconds.
      em resposta a: Criação Modelo Reconhecimento de Imagens #34516
      Bruno Leite
      Participante

        Obrigado meu Caro!. Vou seguir suas dicas corretamente e aplicar onde eu trabalho. Em relação aos projetos acabei de ver que existe mesmo, acabei me equivocando!. Obrigado pelo ajuda!. Abraços

      Visualizando 2 posts - 1 até 2 (de 2 do total)