arvore de decisão

Visualizando 2 posts - 1 até 2 (de 2 do total)
  • Autor
    Posts
  • #45435

    Boa tarde!! Deu erro, poderia me ajudar identificar, por favor,o problema?

     

    from yellowbrick.classifier import ConfusionMatrix
    cm = ConfusionMatrix(arvore_credit)
    cm.fit(x_census_treinamento,y_census_treinamento)
    cm.score(x_census_teste,y_census_teste)

     

    ValueError Traceback (most recent call last)
    ~\AppData\Local\Temp\ipykernel_10800\3205665905.py in <module>
    2 cm = ConfusionMatrix(arvore_credit)
    3 cm.fit(x_census_treinamento,y_census_treinamento)
    —-> 4 cm.score(x_census_teste,y_census_teste)

    ~\anaconda3\lib\site-packages\yellowbrick\classifier\confusion_matrix.py in score(self, X, y)
    192 “””
    193 # Call super to check if fitted and to compute self.score_
    –> 194 super(ConfusionMatrix, self).score(X, y)
    195
    196 # Create predictions from X (will raise not fitted error)

    ~\anaconda3\lib\site-packages\yellowbrick\classifier\base.py in score(self, X, y)
    236
    237 # This method implements ScoreVisualizer (do not call super).
    –> 238 self.score_ = self.estimator.score(X, y)
    239 return self.score_
    240

    ~\anaconda3\lib\site-packages\sklearn\base.py in score(self, X, y, sample_weight)
    649 from .metrics import accuracy_score
    650
    –> 651 return accuracy_score(y, self.predict(X), sample_weight=sample_weight)
    652
    653 def _more_tags(self):

    ~\anaconda3\lib\site-packages\sklearn\tree\_classes.py in predict(self, X, check_input)
    465 “””
    466 check_is_fitted(self)
    –> 467 X = self._validate_X_predict(X, check_input)
    468 proba = self.tree_.predict(X)
    469 n_samples = X.shape[0]

    ~\anaconda3\lib\site-packages\sklearn\tree\_classes.py in _validate_X_predict(self, X, check_input)
    431 “””Validate the training data on predict (probabilities).”””
    432 if check_input:
    –> 433 X = self._validate_data(X, dtype=DTYPE, accept_sparse=”csr”, reset=False)
    434 if issparse(X) and (
    435 X.indices.dtype != np.intc or X.indptr.dtype != np.intc

    ~\anaconda3\lib\site-packages\sklearn\base.py in _validate_data(self, X, y, reset, validate_separately, **check_params)
    583
    584 if not no_val_X and check_params.get(“ensure_2d”, True):
    –> 585 self._check_n_features(X, reset=reset)
    586
    587 return out

    ~\anaconda3\lib\site-packages\sklearn\base.py in _check_n_features(self, X, reset)
    398
    399 if n_features != self.n_features_in_:
    –> 400 raise ValueError(
    401 f”X has {n_features} features, but {self.__class__.__name__} ”
    402 f”is expecting {self.n_features_in_} features as input.”

    ValueError: X has 108 features, but DecisionTreeClassifier is expecting 3 features as input.

    In [ ]:

    #45438
    Denny Ceccon
    Moderador

      Olá André,

      Eu executei o notebook desta aula até essa parte do código e deu tudo certo, pela mensagem de erro é possível que você tenha esquecido de executar algum código, tenta de novo desde o início.

    Visualizando 2 posts - 1 até 2 (de 2 do total)
    • Você deve fazer login para responder a este tópico.