Forum Replies Created

Viewing 15 posts - 226 through 240 (of 410 total)
  • Author
    Posts
  • in reply to: Dúvida – Funções de Ativação #39919
    Denny Ceccon
    Moderator

      Olá Edsson,

      Não só é possível como é assim que as redes neurais são geralmente desenhadas. As ativações internas servem para que a rede neural aprenda a modelar comportamentos não lineares, enquanto que a ativação da saída está mais associada ao tipo de problema: linear se for regressão, sigmoide se for classificação binária e softmax se for classificação com mais categorias.

      in reply to: Naïve Bayes #39885
      Denny Ceccon
      Moderator

        Para problemas categóricos, você usaria a classe CategoricalNB (documentação). Depois de treinar o modelo, as probabilidades estão no atributo feature_log_prob_, só que aqui você vai encontrar o log das probabilidades. Para converter para escala decimal, use a função np.exp.

        Exemplo com dados inventados:

        rng = np.random.RandomState(1)
        X = rng.randint(3, size=(10, 4))
        y = np.array([1, 2, 2, 2, 1, 2, 1, 1, 1, 2])
        from sklearn.naive_bayes import CategoricalNB
        clf = CategoricalNB(force_alpha=True)
        clf.fit(X, y)
        
        print(clf.feature_log_prob_)
        
        # [array([[-2.07944154, -0.69314718, -0.98082925], 
                  [-1.38629436, -0.69314718, -1.38629436]]), 
           array([[-0.69314718, -1.38629436, -1.38629436], 
                  [-0.98082925, -0.98082925, -1.38629436]]), 
           array([[-0.98082925, -0.98082925, -1.38629436], 
                  [-0.47000363, -1.38629436, -2.07944154]]), 
           array([[-1.38629436, -0.69314718, -1.38629436], 
                  [-1.38629436, -1.38629436, -0.69314718]])]
        
        print(np.exp(np.array(clf.feature_log_prob_))
        
        # array([[[0.125, 0.5 , 0.375], 
                  [0.25 , 0.5 , 0.25 ]], 
                 [[0.5 , 0.25 , 0.25 ],
                  [0.375, 0.375, 0.25 ]], 
                 [[0.375, 0.375, 0.25 ], 
                  [0.625, 0.25 , 0.125]], 
                 [[0.25 , 0.5 , 0.25 ], 
                  [0.25 , 0.25 , 0.5 ]]])

        O array resultante tem shape (4, 2, 3) porque o exemplo tem 4 variáveis, 2 classes target e 3 categorias por variável.

        in reply to: Complexidade de Inserção/Exclusão com concatenação #39857
        Denny Ceccon
        Moderator

          Olá João,

          Não entendi bem sua dúvida, pois se você quer eliminar o segundo elemento de um vetor armazenado na forma de lista, basta fazer:

          a = a[:2] + a[3:]

          Esta operação não usa loop.

          in reply to: Camada de MaxPooling #39753
          Denny Ceccon
          Moderator

            Oi Vinícius,

            Você pode empilhar mais de uma convolução antes de aplicar o MaxPooling.

            in reply to: Naïve Bayes #39745
            Denny Ceccon
            Moderator

              Olá William,

              Não encontrei esta informação no vídeo para entender o contexto, você pode ser mais específico? Achei estranho você comentar R pois o curso é em Python.

              in reply to: Classificação de imagens errando muito #39723
              Denny Ceccon
              Moderator

                Não tem como, lembre-se que as redes neurais são conhecidas como “caixas pretas” porque não é possível entender como funciona seu processo de decisão. Mas mesmo assim, eu desconfio que o problema não seja relacionado ao funcionamento da rede mas sim à formatação dos dados, seria importante observar se a rede está recebendo os rótulos corretos por exemplo.

                in reply to: Classificação de imagens errando muito #39720
                Denny Ceccon
                Moderator

                  Olá Mateus,

                  É difícil dizer sem debugar o código, mas nós não costumamos debugar implementações pessoais. As partes mais evidentes (configuração da última camada, função de custo) me parecem estar OK. Eu te recomendo rodar seu código em uma IDE que te permita debugar, assim você executa linha por linha, isso ajuda a encontrar problemas.

                  in reply to: Utilizar GPU em vez de CPU nos treinamentos #39719
                  Denny Ceccon
                  Moderator

                    Olá Mateus,

                    O Tensorflow agora identifica automaticamente a GPU e usa quando ela está disponível, mas você precisa instalar drivers específicos para que este reconhecimento seja feito. Cada placa tem um processo diferente, se você quiser usar sua GPU o melhor caminho é procurar ajuda no Google mesmo.

                    in reply to: Gráfico da Gorjeta Distorcido #39697
                    Denny Ceccon
                    Moderator

                      Olá Ronald,

                      Acho que é porque seus antecedentes começam em 1, mas na aula eles começam em 0.

                      in reply to: Criação da variável X_encode #39695
                      Denny Ceccon
                      Moderator

                        Olá Vinícius,

                        Estes são os atributos “criados” na forma compactada, que não têm um significado concreto como na base original, onde os 3 atributos significam income, age e loan. Eles poderiam ter qualquer nome, mas o professor escolheu botar números sucessivos para cada coluna dos dados compactados.

                        in reply to: Erro no Tensorflow #39693
                        Denny Ceccon
                        Moderator

                          Olá Victor,

                          É difícil dizer sem ter acesso ao seu ambiente, e nós nem oferecemos este tipo de serviço. Uma coisa que eu tento fazer nesses casos é criar um ambiente virtual novo e reinstalar as bibliotecas, pois pode ser que seu ambiente atual esteja corrompido.

                          • This reply was modified 2 years, 10 months ago by Denny Ceccon.
                          in reply to: Dúvida na contagem do error #39670
                          Denny Ceccon
                          Moderator

                            Isso.

                            in reply to: Dúvida no código do vídeo #39666
                            Denny Ceccon
                            Moderator

                              Bem observado, Vinícius!

                              O certo seria ter um loop para percorrer os batches na base MNIST também, pois na aula é utilizado somente 1 batch (128 registros) em cada época, mas existem mais dados disponíveis para treinamento. O script apresentado é mais para demonstrar o funcionamento do algoritmo e da pipeline, mas certamente pode ser melhorado.

                              in reply to: Dúvida sobre o peso #39665
                              Denny Ceccon
                              Moderator

                                Olá Mateus,

                                Isto é complemento de sua outra pergunta. O erro é determinado como a soma/média dos erros individuais, então ele é o mesmo para todas as entradas.

                                in reply to: Dúvida na contagem do error #39664
                                Denny Ceccon
                                Moderator

                                  Olá Mateus,

                                  É isso mesmo, mas via de regra o erro é representado como a média, não a soma.

                                Viewing 15 posts - 226 through 240 (of 410 total)